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Abstract 
 

A difficult experimental problem of a Hungarian competition (selecting competition for IPhO) and 
different methods for analyzing the experimental results are presented. It is demonstrated, that the background 
and the solution of this optical problem can be nice discussed by simple computer programs in a secondary 
school workshop. 
 
 
 

1 Introduction 
 
 

Inventing an experimental problem for a competition is not an easy job: the problem 
should be interesting, not widely known and solvable in a few hours; the apparatus (a lot of 
uniform copies) should be simple and cheep. Experimental setups of earlier competitions are 
therefore valuable for physics teachers.  

They are widely used for preparing students for other competitions: to solve 
experimental problems is the best way to practice experimental techniques, data analysis and 
error estimation. 

The apparatus of an experimental problem can be also used for smaller local 
competitions, where originality is not so important. 

Nice experimental problems of competitions are excellent not only for competitors, 
but for inquiring students as measuring exercises. In most secondary school there is not 
enough time and a well-equipped physics lab to arrange measurements for students. The 
Institute of Physics at the Budapest University of Technical Engineering organizes for ten 
years the experimental round of the National Schools Competition in physics. By using the 
experimental setups of these competitions measuring exercises are announced for secondary 
school students. The students make the same measurements and solve the same problems as 
the competitors, but with the help of a tutor. 

The fourth suggestion for using an experimental problem is a secondary school 
workshop. In a workshop inquiring students and teachers can solve and discuss the problem 
together. In contrast to the competitors the participants of the workshop have more time, can 
work together, can use PC software’s and can learn more about the mathematical and physical 
background of the problem. 

In this paper a nice and difficult optical problem of a Hungarian competition (selecting 
competition for IPhO) and different methods for analyzing the experimental results are 
presented. The practical and theoretical difficulties of the problem are shown and the 
possibility of a detailed discussion (without advanced mathematics - but with the help of 
simple PC software’s) in a secondary school workshop is demonstrated. 
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2 The experimental problem1 

 
 

There are two optical structures to investigate by semiconductor laser. Both of them 
are multiple slits, i.e. a few parallel and identical transparent slits on a dark background 
separated by the same distance. From the diffraction pattern of the laser beam determine the 
distance, the number and the width of the slits in both optical structures. 
 
Apparatus 

• A photo detector (in a black plastic box), i.e. a circuit contains a photodiode, a 
battery and a resistor. The output voltage of the photo detector is proportional to 
the intensity of the light falling on the photodiode.  

• A digital multimeter to measure voltage. 
• A semiconductor laser. 
• The optical structures in a frame. 
• Aluminum blocks to fix the frame. 
• A measuring tape, a ruler, adhesive tape. 
 

   
 
Procedure 

• Fix the ruler to the table by adhesive tape. Beside the ruler you can move the photo 
detector and measure its position. Connect the detector to the multimeter. 

• Put the laser about 1 m from the detector and direct the beam into the photodiode. 
Adjust the laser to reach a maximum output voltage (about 9 V). 

• Place one of the slit structures into the beam direct before the laser and fix the 
frame by the aluminum blocks. 

• Move gently the detector in both direction and measure how the diffracted light 
intensity changes with position. 

• Plot the diffraction pattern of both slit structures, i.e. a graph of relative light 
intensity against diffraction angle. 

• Determine the distance of the slits for both structures. 
• Determine the number of the slits for both structures. 
• Determine the width of the slits for both structures. 

 
The wavelength of the laser is 650 nm ± 1%. 

                                                           
1 It was the first experimental problem of the Fényes Competition (Hungarian Selecting Competition for IPhO), 
Sopron, Hungary, 9th May 1998. The time available was 2 hours. The problem was invented and assembled by 
Gyula Honyek (ELTE Radnóti Miklós Gymnasium, Budapest) and the author. 
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3 The solution of the problem expected at the competition 
 
 

3.1 The difficulties of the measurement 
 
The careful adjusting of the arrangement is very important. If the laser beam does not 

directed to the center of the photodiode, the intensity decreases and the small maxima of the 
diffraction pattern can not be detected. The slit structure must be centered into the beam, too. 

The whole diffraction pattern is only a few cm and the small maxima are separated 
only by 2 – 2.5 mm, so the detector position should be read at least with half a mm accuracy. 

The light intensity at the small maxima is only a few percent of the intensity at the 
middle of the pattern, so for an accurate reading it is necessary to change the measurement 
range of the voltmeter during the measurement. 

For the correct estimation of the relative intensities, it is important to measure the 
background light intensity and subtract it from the measured data.  

An additional error is that the dark background of the optical structures is not absolute 
black. The light intensity vs. position can be measured, when the laser beam cross the dark 
region, but the correction of the measured data with this pattern was not expected at the 
competition. 

 
3.2 Measured data 
 
The plots of measured data for both slit structures are shown in two different 

magnifications in Fig. 1 and Fig. 2. 
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Fig. 1 
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Fig. 2 
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The data can be corrected with the background light intensity (measured without laser 
beam) and related to the main maximum as shown in Fig. 3. 
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Fig. 3 
 

A second correction can be made by 
subtracting the intensity vs. position data 
measured as the laser beam crosses the (not 
absolute black) background of the slit 
structures. These data (thick line) compared 
with one of the slit structures (narrow line) 
are shown in Fig. 4. For the solution of the 
experimental problem the corrected graphs 
shown in Fig. 5 are to be interpreted. 0
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Fig. 4 
 

0

0,05

0,1

0,15

0,2

0,25

0,3

-25 -20 -15 -10 -5 0 5 10 15 20 25

y  (mm)

I rel

         

0

0,05

0,1

0,15

0,2

0,25

0,3

-25 -20 -15 -10 -5 0 5 10 15 20 25

y  (mm)

I rel

 
 

Fig. 5 

 
3.3 Interpretation of the measured data 
 
3.3.1 Determination of the distance between neighboring slits 
 
This part of the problem is the easiest, most competitors could solve it. The notation 

and some simple equation used for the problem are shown in Fig. 6. 
The condition for the first big maximum can be derived in the same way as for the 

double slit or for the grating. If the phase difference between two neighboring slits is 2π the 
diffracted rays from different slits increase each other. 
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Fig. 6 
 
From this follows the well known result: 
 

θθλ
≈= sin

d
 (with θ << 1), 

 

d
DDDy λθθ ≈≈= tan . 

 

This expression gives the exact position of the first maximum if w << d. It is not true 
for the investigated slit structures, but the difference is less than 3 %. 

The position of the first big maximum can be read from the measured and corrected 
data shown in Fig. 5. The peaks are between 9.5 and 10.0 mm for both structures. From this 

 

y = 9.75 ± 0.25 mm 
 

Used the measured value of D = 1 m (with 0.5 % accuracy) and the given value of λ 
the separation of the slits is 

 

==
y

Dd λ 67 ± 3 µm   
 

for both slit structures. 
 
3.3.2 The number of slits 
 
The number of slits (n) can be determined from the number of small maxima (or from 

the number of zeros) between two neighboring big maxima. The relationship can be 
understood by phasors, i.e. vectors expressing phase (and amplitude). Phasors are used in the 
secondary school to represent voltages and currents in AC circuits, for example. 

The rays from neighboring slits reach the photodiode with a phase difference of 
 

θ
λ

ϕ dπ2
= , 

 

so the phasors represent the resultant E1 vectors of the light from a single slit are twisted with 
this angle relative to each other. The light intensity is proportional to the square of the 
(vectorial) sum of the phasors. 

incident 
ray 
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λ
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The sum of n phasors with the same length and twisted with the same ϕ < 2π angle 
relative to each other can be zero if 

 

n
m π2

=ϕ , 
 

where m is an integer and 0 < m < n (see Fig. 7 for n = 5). Since m has n-1 different values 
there are n-1 zeros between two neighboring big maxima and therefore there are n-2 small 
maxima. 

 

 
 

Fig. 7 
 

Therefore the number of slits is n = 5 in the first structure and n = 4 in the other one. 
 
3.3.3 Determining the (relative) width of the slits 
 
This is the most sophisticated part of the problem. An estimation had been expected, 

but nobody could solve this part at the competition. To determine the exact width of the slits a 
detailed analysis of the phasor diagram is necessary, but it is easier to realize, that the relative 
width w/d can be neither too small nor too big.  

If w << d the phasors represent the resultant E1 vector of a single slit would not 
decrease (or decrease very slowly) with increasing θ and at ϕ  = 2π the sum of the phasors 
would be the same as at ϕ  = 0. This would mean that the intensity of the first big maximum is 
the same (or similar) as the central main maximum. 

If w/d ≈ 1, the slit structure would behave as an n-times wider single slit. A wider slit 
would have a narrower diffraction pattern without (or with very small) maxima beyond the 
central main maximum. 

If w/d is not very small the phasors represent the resultant E1 vector of a single slit can 
decrease rapidly with increasing θ (because of the interference between rays crossing the 
same slit). In Fig. 8 the phasor diagram of a multiple slit is shown with n = 5 and w/d = 0.625 
at θ = 0. The amplitude of E1 vector is proportional to the width of the slit. If  C = 1 is chosen 
for this factor the intensity of the central main maximum can be expressed. 

 

 
 

Fig. 8 
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In Fig. 9 the phasor diagram of the same multiple slit is shown at θ > 0. The phase 
difference is increasing with the distance x and the small phasor components form an arc. The 
radius R has the unit of E. The length of the arc does not change, so R decreases with 
increasing θ. The resultant E1 vector of a single slit is the chord of the arc. The light intensity 
I is proportional to the square of the total resultant E vector. 
 

 
 

Fig. 9 
 

In Fig. 10 the change of the total resultant E is demonstrated for the same multiple slit 
(n = 5, w/d = 0.625) at increasing θ. The zeros are similar observable as in Fig. 7, but from 
this figure the intensities of the maxima can be determined, as well.  
 

 
 

Fig. 10 
 

The relative intensity of the first big maximum (shown in the last phasor diagram; the 
maximum appears not exactly at this angle but the difference is small) can be calculated by 
the equations shown in Fig. 8 and Fig. 9: 
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From the measured and corrected data the relative intensity of the first big maximum 
is about 0.25 for the first structure and about 0.15 for the other one. These results correspond 
to w/d = 0.6 and w/d = 0.7 respectively. To estimate the error of relative intensities first of all 
the inaccurate measured intensity of the central maximum must be considered. The correction 
with the pattern shown in Fig. 4 is only approximate. 

If the intensity of the second big maximum is also investigated a more accurate 
determination of w/d is possible. In Fig. 11 the phasor diagrams of two slit structures with 
different w/d value are shown at ϕ  = 2π and at ϕ  = 4π (at the first and at the second big 
maxima). At ϕ  = 2π there is only a small difference in the magnitude of the E1 vectors 
between the different structures, but at ϕ  = 4π the difference become more visible. Where 
w/d = 0.5 the second big maximum disappears (E1 = 0). 
 

    
 

Fig. 11 
 

The relative intensity of the second big maxima compared to the intensity of the first 
big maxima are very small (about one percent) for both measured slit structure. Therefore w/d 
can not be significant different from 0.5. 

Considered both argumentations the best result for the relative width of the slits is 
 

w/d ≈ 0.55 ± 0.05 
 

for both structures. 
 
 

4 Demonstration and discussion of the problem in a secondary school 
workshop2 

 
 

4.1 The concept of the workshop 
 
The secondary school workshop is an afternoon event for inquiring students and 

teachers where an interesting problem is performed and discussed. The participation is 
voluntary; the approach of the problem is interdisciplinary and free from the syllabus. In the 
workshop there is enough time to learn about the mathematical and physical background, to 
perform nice experiments and make measurements, to analyze the data by PC software’s and 

                                                           
2 The workshop was held in the Árpád Gymnasium (secondary school), Budapest, Hungary, 12th January 2000. 
The mathematical background (Fourier-integral) was introduced by István Mezei (Eötvös Loránd University, 
Budapest). The measurement, the solution of the problem and the computer simulation was presented by the 
author. 
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to discuss the details and the consequences of the problem. It is not only for students but for 
colleagues, to learn some new ideas from each other. 

Besides performing and discussing this nice experiment the workshop was held to 
propagate the advantages of the interdisciplinary approach and to demonstrate the use of 
simple PC software’s for solving and analyzing problems, which are in the secondary school 
mathematical too difficult. 

As a mathematical background the principles of Fourier-series and the Fourier-integral 
were introduced (without mathematical exactness). The experimental problem, the diffraction 
of light on a multiple slit was presented as a physical realization of this mathematical 
construction. It was only mentioned that the diffraction pattern could be calculated by 
Fourier-integral, but the proof and the solution (see the Appendix) were not shown. 

 
4.2 The solution and discussion of the experimental problem in the workshop 
 
After discussing the difficulties the measurement was carried out as it is suggested in 

the text of the problem (Chapter 2). In contrast to the competition the participants worked 
together and the measured data was plotted by Microsoft Excel software (the worksheet and 
the graph was prepared, the measured data could be typed immediately). [1] 

For the interpretation of the measured data the phasor representation was introduced in 
a similar way as in Chapter 3. By means of phasor representation the relative intensity Irel can 
be calculated without the solution of the Fourier-integral. Plotting the calculated values of the 
relative intensity Irel vs. detector position y the diffraction pattern for a given multiple slit 
structure (with given n, d and w values) can be simulated and the simulated pattern can be 
compared with the measured one. This is the most important possibility of the workshop. 

In a Microsoft Excel worksheet the calculation and the plotting can be made easily. As 
it is shown in Fig. 9  
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The sum of the vectors (Fig. 12) can be calculated by means of vector components: 
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For plotting the relative intensity vs. the 
detector position: 
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and 
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Fig. 12
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Using these equations a table is filled out and plotted [2]. By changing the parameters 
n, d and w/d the graph also changes and can be compared with measured data. The influence 
of the number of slits (n) on the graph is visible at once. Increasing the value of the distance 
of the slits (d) moves the position of the maxima to the left. Therefore the value of d can be 
easy found by comparison, too. Changing the value of the relative width of the slits (w/d) 
influences the intensity of the maxima. The best agreement between the simulated and 
measured graph can be find after “playing” with this parameter. 

The best fits are shown in Fig. 13 and Fig. 14. The values of the parameters are in 
agreement with the results determined in Chapter 3. 
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Fig. 13 
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Fig. 14 
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As the best values were found the participants could play with the apparatus and the 
simulation. Playing with the parameters not only makes possible to find the result of the 
experimental problem but helps to understand diffraction on a multiple slit much better. The 
apparatus, measured data and simulations can be used later for physics lessons, too. But the 
most important effect of the workshop that perhaps its free atmosphere and interdisciplinary 
approach could arouse some participants’ interest in physics.  

 
 

5 Appendix 
 

Calculation of the intensity function I(θ) by Fourier-integral 
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6 Downloads 
 
[1] The measured data (tables and plots, zipped Excel files): 

http://goliat.eik.bme.hu/~vanko/wfphc/measure.zip  
 
[2] The simulation based on the phasor representation (zipped Excel file): 

http://goliat.eik.bme.hu/~vanko/wfphc/simulate.zip  
 
[3] The presentation held on the 17th April 2004 on the Second Congress of the World 
Federation of Physics Competitions, Paterswolde, The Netherlands, 14-18 April 2004 (zipped 
PowerPoint file): 

http://goliat.eik.bme.hu/~vanko/wfphc/presentation.zip  


